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ABSTRACT

Motivation: Computer simulations have become an important
tool across the biomedical sciences and beyond. For many
important problems several different models or hypotheses exist
and choosing which one best describes reality or observed data
is not straightforward. We therefore require suitable statistical tools
that allow us to choose rationally between different mechanistic
models of, e.g. signal transduction or gene regulation networks. This
is particularly challenging in systems biology where only a small
number of molecular species can be assayed at any given time and
all measurements are subject to measurement uncertainty.
Results: Here, we develop such a model selection framework based
on approximate Bayesian computation and employing sequential
Monte Carlo sampling. We show that our approach can be
applied across a wide range of biological scenarios, and we
illustrate its use on real data describing influenza dynamics and
the JAK-STAT signalling pathway. Bayesian model selection strikes
a balance between the complexity of the simulation models and
their ability to describe observed data. The present approach
enables us to employ the whole formal apparatus to any system
that can be (efficiently) simulated, even when exact likelihoods are
computationally intractable.
Contact: ttoni@imperial.ac.uk; m.stumpf@imperial.ac.uk
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Mathematical models are widely used to describe and analyse
complex systems and processes. Formulating a model to describe,
e.g. a signalling pathway or host parasite system, requires us to
condense our assumptions and knowledge into a single coherent
framework (May, 2004). Mathematical analysis and computer
simulations of such models then allow us to compare model
predictions with experimental observations in order to test, and
ultimately improve these models. The continuing success, e.g. of
systems biology, relies on the judicious combination of experimental
and theoretical lines of argument.

Because many of the mathematical models in biology (as in many
other disciplines) are too complicated to be analysed in a closed
form, computer simulations have become the primary tool in the
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quantitative analysis of very large or complex biological systems.
This, however, can complicate comparisons of different candidate
models in light of (frequently sparse and noisy) observed data.
Whenever probabilistic models exist, we can employ standard model
selection approaches of either a frequentist, Bayesian or information
theoretic nature (Burnham and Anderson, 2002; Vyshemirsky and
Girolami, 2008). But if suitable probability models do not exist, or
if the evaluation of the likelihood is computationally intractable, then
we have to base our assessment on the level of agreement between
simulated and observed data. This is particularly challenging when
the parameters of simulation models are not known but must be
inferred from observed data as well. Bayesian model selection side-
steps or overcomes this problem by marginalizing (i.e. integrating)
over model parameters, thereby effectively treating all model
parameters as nuisance parameters.

For the case of parameter estimation when likelihoods are
intractable, approximate Bayesian computation (ABC) frameworks
have been applied successfully (Beaumont et al., 2002; Marjoram
et al., 2003; Ratmann et al., 2007, 2009; Sisson et al., 2007; Toni
et al., 2009). In ABC, the calculation of the likelihood is replaced by
a comparison between the observed data and simulated data. Given
the prior distribution P(θ) of parameter θ, the goal is to approximate
the posterior distribution, P(θ|D0)∝ f (D0|θ)P(θ), where f (D0|θ)
is the likelihood of θ given the data D0. ABC methods have the
following generic form:

(1) Sample a candidate parameter vector θ∗ from prior
distribution P(θ).

(2) Simulate a dataset D∗ from the model described by a
conditional probability distribution f (D|θ∗).

(3) Compare the simulated dataset, D∗, to the experimental
data, D0, using a distance function, d, and tolerance ε; if
d(D0,D∗)≤ε, accept θ∗. The tolerance ε≥0 is the desired
level of agreement between D0 and D∗.

The output of an ABC algorithm is a sample of parameters from the
distribution P(θ|d(D0,D∗)≤ε). If ε is sufficiently small then this
distribution will be a good approximation for the ‘true’ posterior
distribution, P(θ|D0). A tutorial on ABC methods is available in the
Supplementary Material.

Such a parameter estimation approach can be used whenever
the model is known. However, when several plausible candidate
models are available we have a model selection problem, where
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both the model structure and parameters are unknown. In the
Bayesian framework, model selection is closely related to parameter
estimation, but the focus shifts onto the marginal posterior
probability of model m given data D0,

P(m|D0)= P(D0|m)P(m)

P(D0)

where P(D0|m) is the marginal likelihood and P(m) the prior
probability of the model (Gelman et al., 2003). This framework
has some conceptual advantages over classical hypothesis testing:
for example, we can rank an arbitrary number of different non-
nested models by their marginal probabilities; and rather than only
considering evidence against a model the Bayesian framework
also weights evidence in a model’s favour (Jeffreys, 1939). In
practical applications, however, a range of potential pitfalls need
considering: model probabilities can show strong dependence on
model and parameter priors; and the computational effort needed
to evaluate these posterior distributions can make these approaches
cumbersome.

The computationally expensive step in Bayesian model
selection is the evaluation of the marginal likelihood, which is
obtained by marginalizing over model parameters; i.e. P(D0|m)=∫

f (D0|m,θ)P(θ|m)dθ, where P(θ|m) is the parameter prior for
model m. Here, we develop a computationally efficient ABC model
selection formalism based on a sequential Monte Carlo (SMC)
sampler. We show that our ABC SMC procedure allows us to employ
the whole paraphernalia of the Bayesian model selection formalism,
and illustrate the use and scope of our new approach in a range of
models: chemical reaction dynamics, Gibbs random fields and real
data describing influenza spread and JAK-STAT signal transduction.

2 ABC FOR MODEL SELECTION
Our goal is to estimate the marginal posterior distribution of a model,
P(m|D0), and in this section we explain two ways in which this
problem can be approached. In the joint space-based approach,
we define a joint space of model indicators, m=1,2,...,|M|,
and corresponding model parameters, θ, obtain the joint posterior
distribution over the combined space of models and parameters,
P(θ,m|D0), and finally marginalize over parameters to obtain
P(m|D0). In the second, marginal likelihood-based approach, we
estimate marginal likelihoods (also called the evidence), P(D0|m),
for each given model, and use these to calculate the marginal
posterior model distributions through

P(m|D0)= P(D0|m)P(m)∑
m′ P(D0|m′)P(m′) .

Both approaches have been applied under theABC rejection scheme,
which is computationally prohibitive for models with even an only
moderate number of parameters (Grelaud et al., 2009; Wilkinson,
2007). Here, we incorporate ideas from SMC to both of the above
approaches, making them computationally more efficient. In this
section, we present only the more powerful approach ABC SMC
model selection on the joint space. We refer the reader to the
Supplementary Material for derivations and details, as well as
discussion on the ABC SMC model selection algorithm based on
the marginal likelihood approach.

In model selection based on ABC rejection, we adapt the basic
ABC procedure (presented in Section 1) to the joint space, where

particles (m,θ) consist of a model indicator m and a parameter θ.
The ABC rejection model selection algorithm on the joint space
proceeds as follows (Grelaud et al., 2009):

(1) Draw m∗ from the prior P(m).

(2) Sample θ∗ from the prior P(θ|m∗).

(3) Simulate a candidate dataset D∗ ∼ f (D|θ∗,m∗).

(4) Compute the distance. If d(D0,D∗)≤ε, accept (m∗,θ∗),
otherwise reject it.

(5) Return to 1.

Once a sample of N particles has been accepted, the marginal
posterior distribution is approximated by

P(m=m′|D0)≈ #accepted particles(m′,.)
N

.

In the ABC SMC model selection algorithm on the joint space,
particles (parameter vectors) {(m1,θ1),...,(mN,θN )} are sampled
from the prior distribution, P(m,θ), and propagated through
a sequence of intermediate distributions, P(m,θ|d(D0,D∗)≤εi),
i=1,...,T −1, until they represent a sample from the target
distribution, P(m,θ|d(D0,D∗)≤εT ). The tolerances εi are chosen
such that ε1 > ···>εT ≥0, and the distributions thus gradually
evolve towards the target posterior distribution.

The algorithm is presented below (and explained in the
Supplementary Material).

2.1 ABC SMC model selection algorithm on the
joint space

MS1 Initialize ε1,...,εT .
Set the population indicator t =1.

MS2.0 Set the particle indicator i=1.

MS2.1 If t =1, sample (m∗∗,θ∗∗) from the prior distribution
P(m,θ).
If t >1, sample m∗ with probability Pt−1(m∗) and draw
m∗∗ ∼KMt(m|m∗).
Sample θ∗ from previous population {θ(m∗∗)t−1} with
weights wt−1 and draw θ∗∗ ∼KPt,m∗∗ (θ|θ∗).
If P(m∗∗,θ∗∗)=0, return to MS2.1.
Simulate a candidate dataset D∗ ∼ f (D|θ∗∗,m∗∗).
If d(D0,D∗)>εt , return to MS2.1.

MS2.2 Set (m(i)
t ,θ

(i)
t )= (m∗∗,θ∗∗) and calculate the weight of the

particle as

w(i)
t (m(i)

t ,θ
(i)
t )=

⎧⎪⎨
⎪⎩

bt(m
(i)
t ,θ

(i)
t ), if t =1

P(m(i)
t ,θ

(i)
t )bt(m

(i)
t ,θ

(i)
t )

S
, if t >1.

where

bt(m
(i)
t ,θ

(i)
t ) = 1

Bt

Bt∑
b=1

1(d(D0,D∗
b)≤εt)
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S =
|M|∑
j=1

Pt−1(m(j)
t−1)KMt(m

(i)
t |m(j)

t−1)×

∑
k;mt−1=m(i)

t

w(k)
t−1KPt,m(i)

t
(θ(i)

t |θ(k)
t−1)

Pt−1(mt−1 =m(i)
t )

If i<N set i= i+1, go to MS2.1.

MS3 Normalize the weights wt .
Sum the particle weights to obtain marginal model
probabilities,

Pt(mt =m)=
∑

i;m(i)
t =m

w(i)
t (m(i)

t ,θ
(i)
t ).

If t <T , set t = t+1, go to MS2.0.

Particles sampled from a previous distribution are denoted by a
single asterisk, and after perturbation by a double asterisk. KM
is a model perturbation kernel which allows us to obtain model
m from model m∗ and KP is the parameter perturbation kernel.
Bt ≥1 is the number of replicate simulation run for a fixed particle
(for deterministic models Bt =1) and |M| denotes the number of
candidate models.

The output of the algorithm, i.e. the set of particles {(mT ,θT )}
associated with weights wT , is the approximation of the full
posterior distribution on the joint model and parameter space. The
approximation of the marginal posterior distribution of the model
obtained by marginalization is

PT (mT =m)=
∑

i;m(i)
T =m

w(i)
t (m(i)

T ,θ
(i)
T ),

and we can also straightforwardly obtain the marginalized parameter
distributions.

The algorithm requires the user to define the prior distribution,
distance function, tolerance schedule and perturbation kernels. In
all the examples presented in the results section, we choose uniform
prior distributions for all parameters and models; that is, all models
are a priori equally plausible. Such priors are informative in a sense
that they define a feasible parameter region (e.g. reaction rates are
positive), but they are predominantly non-informative as they do
not specify any further preference for particular parameter values.
This way the inference will mostly be informed by the information
contained in the data. A good tolerance can be found empirically by
trying to reach the lowest distance feasible and arrive at the posterior
distribution in a computationally efficient way. Our perturbation
kernels are component-wise truncated uniform or Gaussian and are
automatically adapted by feeding back information on the obtained
parameter ranges from the previous population. Distance functions
are defined for each model as specified in Section 3. The algorithm
presented in Toni et al. (2009) is a special case of the above algorithm
for discrete uniform KM kernel and uniform prior distribution of the
model P(m).

3 RESULTS
In this section, we illustrate ABC SMC for model selection on a
simple example of stochastic reaction kinetics. We then compare
the computational efficiency of ABC SMC for stochastic models of
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Fig. 1. (a) Stochastic trajectories of species X (red) and Y (blue). Model 1
is simulated for k1 =2.1 (dashed line), model 2 for k2 =30 (full line).
Data points are represented by circles. (b) We have repeated the model
selection run 20 times; the red sections present 25% and 75% quantiles
around the median. Prior distribution P(m) is chosen uniform and k1,
k2 ∼U(0,100). Perturbation kernels are chosen as follows: KPt(k|k∗)=
U(−σ,σ), σ =2(max{k}t−1 −min{k}t−1) and KMt(m|m∗)=0.7 if m=m∗ and
0.3 otherwise. Number of particles N =1000. Bt =1. Distance function is
mean squared error and tolerance schedule ε={3000,1400,600,140,40}.

Gibbs random fields with that of the ABC rejection model selection
method. Finally, we apply the algorithm to several real datasets: first,
we select between different stochastic models of influenza epidemics
(where we can compare our approach with previously published
results obtained using exact Bayesian model selection), and then
apply our approach to choose from among different mechanistic
models for the STAT5 signalling pathway.

3.1 Chemical reaction kinetics
We illustrate our algorithm for the stochastic reaction kinetic models

X +Y
k1−→2Y and X

k2−→Y . The first is a model of an autocatalytic
reaction, where the reaction product Y is the catalyst for the reaction.
In the second, molecules Y do not need to be present for a change
from X to Y to occur. Such models have, for example, been
considered in the context of prion replication dynamics (Eigen,
1996; Prusiner, 1982), where X represents a healthy form of a prion
protein and Y a diseased form.

We simulate synthetic datasets of Y measured at 20 time points
using Gillespie algorithm (Gillespie, 1977) from model 2 with
parameter k2 =30 and initial conditions X0 =40, Y0 =3 (Fig. 1a;
Supplementary Table 1). We apply our ABC SMC algorithm for
model selection, which identifies the correct model with high
confidence (Fig. 1b).

3.2 Gibbs random fields
Gibbs random fields have become staple models in machine
learning, including applications in computational biology and
bioinformatics [see, e.g. Grelaud et al. (2009); Wei and Li (2007)].
Here, we use two Gibbs random field models (Møller, 2003), for
which closed form posterior distributions are available. This allows
us to compare the ABC SMC approximated posterior distributions
of the models with true posterior distributions, and to demonstrate
the computational efficiency of our approach when compared with
model selection based on ABC rejection sampling.
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Fig. 2. (a) True versus inferred posterior distribution of
model m0. In ABC SMC, we use the Euclidian distance
d(D0,x)=√

(S0(D0)−S0(x))2 +(S1(D0)−S1(x))2. N =500. Bt =1.
Tolerance schedule: ε={9,4,3,2,1,0}. Perturbation kernels:
KMt(m|m∗)=0.75 if m=m∗ and 0.25 otherwise; KPt(θ|θ∗)=U(−σ,σ),
σ =0.5(max{θ}t−1 −min{θ}t−1). We have excluded those datasets for
which all states are in 0 or 1 (for which P(m=0)≈0.3094 is also correctly
inferred) from the analysis. (b) Comparison of the number of simulation
steps needed by ABC rejection (nRej) and ABC SMC (nSMC); ABC SMC
yields ∼50-fold speed-up on average.

Both models, m0 and m1, are defined on a sequence of n binary
random variables, x= (x1,...,xn), xi ∈{0,1}; m0 is a collection of n
i.i.d. Bernoulli random variables with probability θ0/(1+exp(θ0));
m1 is equivalent to a standard Ising model, i.e. x1 is taken to be
a binary random variable and P(xi+1 =xi|xi)=θ1/(1+exp(θ1)) for
i=2,...,xn. The likelihood functions are

f0(x|θ0)= eθ0S0(x)

(1+eθ0 )n
and f1(x|θ1)= eθ1S1(x)

2(1+eθ1 )n−1
,

where S0(x)=∑n
i=11(xi =1) and S1(x)=∑n

i=21(xi =xi−1) are
sufficient statistics, respectively.

We simulate 1000 datasets from both models for different
values of parameters θ0 ∼U(−5,5), θ1 ∼U(0,6) and n=100. Using
ABC SMC for model selection allows us to estimate posterior
model distributions correctly and demonstrate a considerable
computational speed-up in ABC SMC compared with ABC rejection
(Fig. 2).

3.3 Infuenza infection outbreaks
We next apply ABC SMC for model selection to models of the
spread of different strains of the influenza virus. We use data
from influenza A (H3N2) outbreaks that occurred in 1977–1978
and 1980–1981 in Tecomseh, Michigan (Addy et al., 1991,
Supplementary Table 2), and a second dataset of an influenza
B infection outbreak in 1975–1976 and influenza A (H1N1)
infection outbreak in 1978–1979 in Seattle, Washington (Longini
and Koopman, 1982, Supplementary Table 3). The basic questions
to be addressed here are whether (i) different outbreaks of the
same strain and (ii) outbreaks of different molecular strains of the
influenza virus can be described by the same model of disease
spread.

We assume that virus can spread from infected to susceptible
individuals and distinguish between spread inside households or
across the population at large (Longini and Koopman, 1982). Let
qc denote the probability that a susceptible individual does not
get infected from the community and qh the probability that a

(a) (b)

(c) (d)

Model

Model

Approximation of model 
posterior P(m|D0)

Approximation of model 
posterior P(m|D0)

Fig. 3. (a) ABC SMC posterior distributions for parameters inferred for a
four-parameter model from the data in Supplementary Table 2. Marginal
posterior distributions of parameters qc1, qh1 (red) and qc2, qh2 (blue).
(b) Approximation of a posterior marginal distribution P(m|D0). Model 1
is a two-parameter and model 2 a four-parameter model (1). All intermediate
populations are shown in Supplementary Figure 1a. (c) The same as (a)
but here the data used is from Supplementary Table 3. (d) Estimation of a
posterior marginal distribution. Model 1 is a two-parameter and model 2
a three-parameter model (1). All intermediate populations are shown in
Supplementary Figure 1b.

susceptible individual escapes infection within their household.
Then wjs, the probability that j out of the s susceptibles in a
household become infected, is given by

wjs =
(

s

j

)
wjj(qcqj

h)s−j, (1)

where w0s =qs
c, s=0,1,2,... and wjj =1−∑j−1

i=0 wij. We are
interested in inferring the pair of parameters qh and qc of the
model (1) using the data from Supplementary Table 2. These data
were obtained from two separate outbreaks of the same strain, H3N2,
and the question of interest is whether these are characterized by
the same epidemiological parameters [this question was previously
considered in Clancy and O’Neill (2007) and O’Neill et al. (2000)].
To investigate this issue, we consider two models: one with four
parameters, qh1, qc1, qh2, qc2, which describes the hypothesis
that each outbreak has its own characteristics; the second models
the hypothesis that both outbreaks share the same epidemiological
parameter values for qh and qc. Prior distributions of all parameters
are chosen to be uniform over the range [0,1].

To apply ABC SMC, we use a distance function

d(D0,D∗)= 1

2
(||D1 −D∗(qh1,qc1)||F +||D2 −D∗(qh2,qc2)||F ),

where || ||F denotes the Frobenious norm, D0 =D1 ∪D2 with D1
the 1977–1978 outbreak and D2 the 1980–1981 outbreak datasets
from Supplementary Table 2, and D∗ is the simulation output from
model (1). The results we obtain are summarized in Figure 3a
and b and strongly suggest that the two outbreaks appear to have
shared the same epidemiological characteristics. Figure 3a shows
the posterior distribution of the four-parameter model. The marginal
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posterior distributions of qh1 and qc1 are largely overlapping with
the marginal posterior distributions of qh2 and qc2 and we therefore,
unsurprisingly, get strong evidence in favour of the two-parameter
model. Figure 3b shows the marginal posterior distribution of the
model; the posterior probability of model 1 is 0.98 (median over 10
runs), which gives unambiguous support to model 1, meaning that
outbreaks of the same strain share the same dynamics.

Outbreaks due to a different viral strain (Supplementary
Table 3) have different characteristics as indicated by the posterior
distribution of the four-parameter model presented in Figure 3c.
This was confirmed by applying our model selection algorithm; the
inferred posterior marginal model probability of a two-parameter
model was negligible (data not shown). From Figure 3c, we also see
that these differences are due to differences in viral spread across the
community whereas within-household dynamics are comparable.
We thus explore a further model with three parameters, qc1, qc2, qh
(model 1), where the two outbreaks share the same within-household
characteristics (qh), and compare it against and the four-parameter
model (model 2). The obtained Bayes factor suggests that there is
only very week evidence in favour of model 1 (Fig. 3d), which is in
agreement with the result of Clancy and O’Neill (2007).

In general genetic predisposition, differences in immunity and
lifestyle, etc., will lead to heterogeneity in susceptibility to viral
infection among the host population. Such a model can be written
as (O’Neill et al., 2000)

wjs(v)=
s−j∑
i=0

(
s

i

)
vi(1−v)s−iwj,s−i. (2)

On the basis of the previous results, we combine both outbreak
datasets from Supplementary Table 2, and find some evidence that
model (2) explains the data better than model (1), suggesting that the
host-virus dynamics are shaped by the molecular nature of the viral
strain, as well as by variability in the host population (Supplementary
Fig. 2).

3.4 JAK-STAT signalling pathway
Having convinced ourselves that the novel ABC SMC model
selection approach agrees with the analytical model probabilities
and those obtained using conventional Bayesian model selection,
while outperforming conventional ABC rejection model selection
approaches, we can now turn our attention to real world scenarios
that have not previously been considered from a Bayesian (exact or
approximate) perspective. Here, we consider models of signalling
though the erythropoietin receptor (EpoR), transduced by STAT5
(Fig. 4a) (Darnell, 1997; Horvath, 2000). Signalling through this
receptor is crucial for proliferation, differentiation and survival of
erythroid progenitor cells (Klingmüller et al., 1996). When the Epo
hormone binds to the EpoR receptor, the receptor’s cytoplasmic
domain is phosporylated, which creates a docking site for signalling
molecules, in particular STAT5. Upon binding to the activated
receptor, STAT5 first becomes phosphorylated, then dimerizes and
translocates to the nucleus, where it acts as a transcription factor.
There have been competing hypotheses about what happens with
the STAT5 in the nucleus. Originally, it had been suggested that
STAT5 gets degraded in the nucleus in an ubiquitin-associated way
(Kim and Maniatis, 1996), but other evidence suggests that they
are dephosphorylated in the nucleus and then trafficked back to the
cytoplasm (Köster and Hauser, 1999).

(a)

(b)

Fig. 4. (a) STAT5 signalling pathway. Adapted from (Arbouzova
and Zeidler, 2006). (b) Histograms show populations of the
model parameter m. Population 20 represents the approximation
of the marginal posterior distribution of m. Tolerance schedule:
ε={200, 100, 50, 35, 30, 25, 22, 20, 19, 18, 17, 16, 15, 14,
13, 12, 11, 10, 9, 8}. Perturbation kernels: KMt(m|m∗)=0.6
if m=m∗ and 0.2 otherwise; KPt(θ|θ∗)=U(−σ,σ),
σ =0.5(max{θ}t−1 −min{θ}t−1). N =500. Distance function:

d(D0,D∗)=
√∑

t

(
y(1)

0 (t)−y∗(1)(t)
σ

(1)
D0

(t)

)2
+

(
y(2)(t)−y∗(2)(t)

σ
(2)
D0

(t)

)2
, with

D0 ={y(1)
0 ,y(2)

0 }, D∗ ={y∗(1),y∗(2)} and y(1) the total amount of

phosphoryalated STAT5 in the cytoplasm and y(2) the total amount

of STAT5 in the cytoplasm. σ
(1)
D0

and σ
(2)
D0

are the associated
confidence intervals; reassuringly, other distance functions, e.g.
the square root of the sum of squared errors yield identical model
selection results (data not shown).

The ambiguity of the shutoff mechanism of STAT5 in the nucleus
triggered the development of several mathematical models (Müller
et al., 2004; Swameye et al., 2003; Timmer and Müller, 2004)
describing different hypotheses. All models assume mass action
kinetics and denote the amount of activated Epo-receptors by
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EpoRA, monomeric unphosphorylated and phosphorylated STAT5
molecules by x1 and x2, respectively, dimeric phosphorylated STAT5
in the cytoplasm by x3 and dimeric phosphorylated STAT5 in the
nucleus by x4. The most basic model developed by Timmer et al.,
under the assumption that phosphorylated STAT5 does not leave the
nucleus, consists of the following kinetic equations,

ẋ1 = −k1x1EpoRA (3)

ẋ2 = −k2x2
2 +k1x1EpoRA

ẋ3 = −k3x3 + 1

2
k2x2

2

ẋ4 = k3x3. (4)

One can then assume that phosphorylated STAT5 dimers dissociate
and leave the nucleus; this is modelled by adding appropriate kinetic
terms to the Equations (3) and (4) of the basic model to obtain

ẋ1 = −k1x1EpoRA +2k4x4

ẋ4 = k3x3 −k4x4.

The cycling model can be developed further by assuming a delay
before STAT5 leaves the nucleus:

ẋ1 = −k1x1EpoRA +2k4x3(t−τ)

ẋ4 = k3x3 −k4x3(t−τ). (5)

This model was chosen as the best model in the original analyses
(Müller et al., 2004; Swameye et al., 2003) based on a numerical
evaluation of the likelihood, followed by a likelihood ratio test
and bootstrap procedure for model selection. The data are partially
observed time course measurements of the total amount of STAT5
in the cytoplasm, and the amount of phosphorylated STAT5 in the
cytoplasm; both are only known up to a normalizing factor.

We propose a further model with clear physical interpretation
where the delay acts on STAT5 inside the nucleus (x4) rather than on
x3 [in Equation (5)], for which a biological interpretation is difficult.
Instead of x3(t−τ), we propose to model the delay of phosphorylated
STAT5 x4 in the nucleus directly and obtain (Zi and Klipp, 2006):

ẋ1 = −k1x1EpoRA +2k4x4(t−τ)

ẋ4 = k3x3 −k4x4(t−τ).

We perform the ABC SMC model selection algorithm on the
following non-nested models: (i) cycling delay model with x3(t−τ),
(ii) cycling delay model with x4(t−τ) and (iii) cycling model
without a delay. The model parameter m can therefore take
values 1–3.

For each proposed model and parameter combination we
numerically solve the ordinary differential equations and add
ε∼N(0,σ) to obtain the simulated time course data. The noise
parameter σ can be either fixed or treated as another parameter to be
estimated; we consider the latter option, under the assumption that
the experimental noise is independent and identically distributed for
all time points.

Figure 4b shows intermediate populations leading to the ABC
SMC marginal posterior distribution over the model parameters
m (population 20). Bayes factors can be calculated from the last
population and according to the conventional interpretation of Bayes
factors (Kass and Raftery, 1995), it can be concluded that there is
strong evidence in favour of model 3 compared to model 1, positive

evidence in favour of model 3 compared to model 2, and positive
evidence in favour of model 2 compared to model 1. Thus, cycling
appears to be clearly important and the model that receives the
most support is the cycling model without a time delay. Here, the
flexibility of ABC SMC has allowed us to perform simultaneous
model selection on non-nested models of ordinary and time-delay
differential equations.

4 DISCUSSION
We have developed a novel model selection methodology based
on ABC and SMC. The results obtained here illustrate the
usefulness and wide applicability of our ABC SMC method,
even when experimental data are scarce, when no measurements
are available for some species, when temporal data are not
measured at equidistant time points and when parameters such
as kinetic rates are unknown. In the context of dynamical
systems, our method can be applied across all simulation and
modelling (including qualitative modelling) frameworks; for JAK-
STAT signal transduction dynamics, for example, we have been able
to compare the relative explanatory power of ordinary and time-
delay differential equation models. Our model selection procedure
is also not confined to dynamical systems; in fact the scope for
application is immense and limited only by the availability of
efficient simulation approaches.

Routine application to complex models in systems, computational
and population biology with hundreds or thousands of parameters
(Chen et al., 2009), will require further numerical developments due
to the high-computational cost of repeated simulations. SMC-based
ABC methods are, however, highly parallelizable and we believe
that future work should exploit this property to make these methods
computationally more efficient. Further potential improvements
might come from (i) regression adjustment techniques that have
so far been applied in the parameter estimation ABC framework
(Beaumont et al., 2002; Blum and François, 2009; Excoffier, 2009);
(ii) from automatic generation of the tolerance schedules (Del
Moral et al., 2009); and (iii) by developing more sophisticated
perturbation kernels that exploit inherent properties of biological
dynamical systems such as sloppiness (Gutenkunst et al., 2007;
Secrier et al., 2009); here especially we feel that there is substantial
room for improvement as the likelihoods of dynamical systems
contain information about the qualitative behaviour (Kirk et al.,
2008) which can also be exploited in ABC frameworks.

5 CONCLUSIONS
We conclude by emphasizing the need for inferential methods
which can assess the relative performance and reliability of different
models. The need for such reliable model selection procedures can
hardly be overstated: with an increasing number of biomedical
problems being studied using simulation approaches, there is an
obvious and urgent need for statistically sound approaches that
allow us to differentiate between different models. If parameters
are known or the likelihood is available in a closed form, then the
model selection is generally straightforward. However, for many
of the most interesting systems biology (and generally, scientific)
problems this is not the case and here ABC SMC can be employed.
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