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Introduction to errors

2.1 The importance of estimating errors

When we measure a physical quantity, we do not expect the value
obtained to be exactly equal to the true value. It is important to give
some indication of how close the result is likely to be to the true value,
that is to say, some indication of the precision or reliability of the
measurements. We do this by including with the result an estimate of its
error. For example, we might measure the focal length f of a lens and
give the final result as

S=(256+2) mm. (2.1)
By this we mean that we expect the focal length to be somewhere in the
range 254 to 258 mm. Equation (2.1) is really a probability statcment. It
means, not that we are certain that the value lies between the limits
quoted, but that our measurements indicate that there is a certain probabil-
ity of its doing so. In chapter 3 we shall make this statement more precise.

Estimates of errors are important because without them we cannot
draw significant conclusions from the experimental results. Suppose, for
example, we wish to find out whether temperature has an effect on the
resistance of a coil of wire. The measured values of the resistance are

200-025 Q at 10°C

200-034 Q at 20 °C.
Is the difference between these two values significant? Without knowing
the errors we cannot say. If, for example, the error in each value of the
resistance is 0-001 Q, the difference is significant, whereas il the error is
0-010 €, then it is not.

Once the result of an experiment has been obtained it goes out into
the world and becomes public property. Different people may make use
of it in different ways. Some may use it in calculations for a practical
end; others may want to compare it with a theoretical prediction. For
example, an electrical engineer may want to know the resistivity of copper
in order to design a transformer, while a solid state physicist may want

v 0 ‘/io-ler'-'-—b-"—'ﬁhiA"p'-' AP



8 Introduction to errors

to know the same quantity to test a theory of electrons in metals. Whatever
use a person makes of an experimental result, he will want to know
whether it is sufficiently precise for his purpose. If he has drawn some
conclusions from the result, he will want to know how much confidence
to place in them. To answer such questions, an estimate of the error in
the result is necessary, and it is the responsibility of the experimenter to
provide it.

Now although the experimenter may not be able to foresee all the
possible uses of his results, he should be aware of some of them. No
experiment should be done in a vacuum - at least not in an intellectual
one. If the experiment is being done to test a theory, the experimenter
should have some idea how precise the result needs to be in order to
provide a useful comparison with the theoretical prediction. So the
idea of using error estimates to draw conclusions from the results of
an experiment applies also in reverse. That is to say, the purpose of
the experiment often determines the error that can be tolerated, and
this in turn may have an important influence on the experimental
procedure.

It might be thought that every experiment should be done as precisely
as possible, but that is an unrealistic point of view. Life is finite, so are
the experimenter’s resources, and so also, unless he is a genius, is his
capacity for taking pains. Therefore it is important to plan and carry out
the experiment so that the precision of the final answer is appropriate
to the ultimate object of the experiment. Suppose, in the example given
atthe beginning of this section, that we are only interested in the resistance
of the coil because we want to use it as a standard resistance in the
temperature range 10 °C to 20°C, and that the precision required is 1
part in 10 000. A measurement of the resistance with an error of 0-010 Q.
would then be quite adequate, and to strive to reduce the error to 0-001 Q
would be a waste of time. On the other hand, to measure the resistance
to only 0-Q5 Q would be even worse because the measurements would
be useless for their purpose.

Just as the final result of an experiment should be obtained to an
appropriate degree of precision, so also should the values of the various
measured quantities within the experiment. Few experiments are so
simple that the final quantity is measured directly. We usually have to
measure several primary quantities and bring the results togetherin order
to obtain the quantity required. The errors in the primary quantities
determine that in the final result. In general the primary errors contribute
different amounts to the final error, and the latter is minimized if the
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finite resources of time, apparatus, and patience available are concen-
trated on reducing those errors that contribute most to the final error.

So we see that the idea of errors is not something of secondary or
peripheral interest in an experiment. On the contrary, it is related to the
purpose of the experiment, the method of doing it and the significance
of the results.

2.2 Systematic and random errors

Errors may be divided into two kinds, systematic and random. A system-
atic error is one which is constant throughout a set of readings.* A
random error is one which varies and which is equally likely to be positive
or negative. .

Random errors are always present in an experiment and, in the absence
of systematic errors, they cause successive readings to spread about the
true value of the quantity - Fig. 2.1a. If in addition a systematic error is
present, the readings spread, not about the true value, but about some
displaced value - Fig. 2.1b.

(a)

4
-

True
value
(b) +— -+ T
True
value

Fig. 2.1. Set of measurements (a) with random errors only and (b) with
systematic plus random errors. Each point indicates the result of a
measurement.

Suppose that the period of a pendulum is measured by means of a
stopclock, and the measurement is repeated many times. Errors in starting
and stopping the clock, in estimating the scale divisions, sr.nall
irregularities in the motion of the pendulum, all these cause variations
in the results of successive measurements and may be regarded as random

* This definition is actually too restrictive - some systematic errors are not constant. But
in order to give the basic ideas we restrict the discussion here to the simple case. More
general cases are considered in chapter 8.
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errors. If no other errors are present, some results will be too high and
others too low. But if, in addition, the clock is running slow, all the
results will be too low. This is a systematic error.

It should be noticed that systematic and random errors are defined
according to whether they produce a systematic or random effect. So we
cannot say that a certain source of error is inherently systematic or
random. Returning to the example, suppose that every time we measure
the period we use a different clock. Some clocks may be running fast
and others slow. But such inaccuracies now produce a random error.

Again, some sources of error may give rise to both systematic and
random effects. For example, in operating the clock we might not only
start and stop it in a slightly irregular manner in relation to the motion
of the pendulum, thus producing a random error, but we might also have
a tendency to start it too late and stop it too early, which would give
rise to a systematic error.

It is convenient to make a distinction between the words accurate and
precise in the context of errors. Thus a result is said to be accurate if it

is relatively free from systematic error, and precise if the random error
is small.

2.3 Systematic errors

Systematic errors often arise because the experimental arrangement is
different from that assumed in the theory, and the correction factor which
takes account of this difference is ignored. It is easy to give examples of
effects that may lead to systematic error. Thermal emfs in a resistance
bridge, the resistance of the leads in a platinum thermometer, the effect
of the exposed stem in a mercury thermometer, heat losses in a
calorimetric experiment, counting losses due to the dead-timein a particle
counter are but a few. Another common source of systematic error is the
one mentioned earlier - inaccurate apparatus.

Random errors may be detected by repeating the measurements. Fur-
thermore, by taking more and more readings we obtain from the arith-
metic mean a value which approaches more and more closely to the true
value. Neither of these points is true for a systematic error. Repeated
measurements with the same apparatus neither reveal nor do they elimi-
nate a systematic error. For this reason systematic errors are potentially
more dangerous than random errors. If large random errors are present
in an experiment, they will manifest themselves in a large value of the
final quoted error. Thus everyone is aware of the imprecision of the
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result, and no harm is done - except possibly to the ego of the experimen-
ter when no one takes notice of his results. However, the concealed
presence of a systematic error may lead to an apparently reliable result,
given with a small estimated error, which is in fact seriously wrong.

A classic example of this was provided by Millikan’s oil-drop experi-
ment to measure e, the elementary charge. In this experiment it is
necessary to know the viscosity of air. The value used by Millikan was
too low, and as a result the value he obtain_ed for e was

e=(1-591+0-002) x 107" C.
This may be compared with the present value (Cohen and Taylor 1973)
e=(1-602 189 +0-000 005) x10™"° C.
Up till 1930, the values of several other atomic constants, such as the
Planck constant and the Avogadro constant, were based on Millikan’s
value for e and were consequently in error by more than 5%.

Random errors may be estimated by statistical methods, which are
discussed in the next two chapters. Systematic errors do not lend them-
selves to any such clear-cut treatment. Your safest course is to regard
them as effects to be discovered and eliminated. There is no general rule
for doing this. It is a case of thinking about the particular method of
doing an experiment and of always being suspicious of the apparatus.
We shall try to point out common sources of systematic error in this
book, but in this matter there is no substitute for experience.
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Treatment of a single variable

3.1 Introduction

Suppose we make a set of measurements, free from systematic error, of
the same quantity. The individual values x,, x., etc., vary owing to random
errors, and the mean value X (i.e. the arithmetic average) is taken as the
best value of the quantity. But, unless we are lucky, % will not be equal
to the true value of the quantity, which we denote by X. The question
we are going to consider is how close we expect % to be to X. Of course
we do not know the actual error in % If we did, we would correct % by
the required amount and get the right value X. The most we can do is
to say that there is a certain probability that X lies within a certain range
centred on X. The problem then is to calculate this range for some specified
probability.

A clue to how we should proceed is provided by the results shown in
Fig. 3.1. On the whole, for the results in Fig. 3.1a we would expect X to
be fairly close to x; whereas for those in Fig. 3.1b we would not be
greatly surprised if there were quite a large difference. In other words,
the larger the spread in the results, the larger we would expect the error

(3) +

(b) t }

Fig. 3.1. Results of successive measurements of the same quantity. The
mean X is expected to be closer to the true value for set (a) than for set

(b).

Distribution of measurements : 13

Table 3.1. Measurements of the
resistance R of a coil

R/Q R/Q
4-615 4-613
4-638 4-623
4-597 4-659
4-634 4-623

in X to be. The whole of the present chapter is concerned with putting
this qualitative statement on a firm quantitative basis. We assume
throughout that no systematic errors are.present.

3.2 Set of measurements
Denote the values of n successive measurements of the same quantity by
X1y X2y eie ey X (3.1)
The number n is not necessarily large and in a typical experiment might
be in the range 5 to 10. The mean is

f=lz X;. (3.2)
n

(Whenever the symbol ¥ appears in the present chapter, the summation
is to be taken from i=1to i=n.)

To fix our ideas let us consider a specific experiment in which the
resistance of a coil is measured on a bridge. The measurement is made
n =8 times. The results are listed in Table 3.1. The mean of these values
is 4-625 (). We require a quantity that gives a measure of the spread in
the 8 values, from which we shall estimate the error in the mean. To
define such a quantity we need to introduce the idea of a distribution -
one of the basic concepts in the theory of statistics.

3.3 Distribution of measurements

(@) Introduction. Although we have only n actual measurements, we
imagine that we go on making the measurements so that we end up with
a very large number N. We may suppose N is say 10 000 000. (Since we
are not actually making the measurements, expense is no object.) We
call this hypothetical set of a very large number of readings a distribution.
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The basic idea to which we shall constantly return is that our actual set
of n measurements is a random sample taken from the distribution of N
measurements.

We may represent any set of measurements by a histogram. This is
true whether it be a set of a small number n of measurements or a
distribution of a large number N. To construct a histogram we simply
divide the range of measured values into a set of equal intervals and
count how many times a measurement occurs in each interval. The width
of the intervals is arbitrary and is chosen for convenience. Figure 3.2
shows a histogram for the measurements in Table 3.1.

AR=002%0

Number of readings in interval

0 T
4.6 4-7

R/ 82
Fig. 3.2. Histogram of the readings given in Table 3.1.

This histogram has a jagged appearance because it réprescnts only a
few values. However, suppose we represent a distribution in this way.
The number of measurements N is so large that we may make the width
of the intervals very small and - provided the measuring instrument gives
sufficiently fine readings - still have an appreciable number of readings
in each interval. If we plot, instead of the histogram itself, the fraction
of the N readings in each interval as a function of the value of the
measurement, we shall get a smooth curve. We may then define a function
f(x), known as the distribution function, whose significance is that f(x) dx
is the fraction of the N readings that lie in the interval x to x+dx. In
other words, f(x)dx is the probability that a single measurement taken
at random from the distribution will lie in the interval x to x+dx. We
shall not specify the exact form of f(x) at this stage but we expect a
typical distribution function to look something like that shown in Fig.3.3.
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Fig. 3.3. Typical function for distribution of measurements.

From its definition f(x) satisfies the relation

r flx)dx=1. (3.3)

-0

Notice the infinite limits in the integral. We do not expect any measure-
ments with values greatly different from the true value X in an actual
experiment. In particular, many quantities are of a nature such that
negative values are impossible. Therefore any function f(x) that we use

‘to represent a distribution must become very small as the difference

between x and X becomes large. For such functions no difficulty arises
from the infinite limits, and they are taken for mathematical convenience.

We shall use the symbol () to denote an average over all the measure-
ments in the distribution. An important average is the mean of the
distribution

(x)= Jw xf(x) dx. (3.4)

-

Since the number of measurements in the distribution is very large, and
they are free from systematic error, (x) may be taken as equal to the true
value X.

(b) Standard error in a single observation. The error in a measurement
with value x is
e=x—-X. (3.5)

The rms (root-mean-square) value of e for all the measurements in the
distribution is denoted by o and is known as the standard deviation of
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the distribution.* Thus o is defined by the equation

=<32>=J_ (x=X)*f(x) dx. (3.6)

2

The standard deviation is a measure of the spread of the distribution,
Le. of the scatter of the measurements. A distribution representing a
precise set of measurements will be highly peaked near x =X and will
have a small value for o; while one representing an imprecise set will
have a large scatter about X and a large value for o (Fig. 3.4). We take
the quantity o as our measure of the error in a single observation, and
itis therefore also referred to as the standard error in a single observation.

(a) (b)

T T
X X

Fig. 3.4. Distribution function f(x) for (a) a precise set of measurements
(small value of o), and (b) an imprecise set of measurements (large value
of o). Note that the area under the two curves is the same because both
functions satisfy the relation (3.3).

(¢) Standard error in the mean. We riow proceed to define a quantity that
specifies the error in the mean of a set of n measurements.

Let us go back to the set of 8 measurements given in Table 3.1. We
have said that they are to be regarded as a random sample taken from
the distribution of single measurements. Imagine the distribution to be
represented By a bin containing N balls, each of which is labelled with
the value of a single measurement. The set of measurements in Table 3.1
may be regarded as the result of drawing 8 balls at random from the bin.
Suppose now we have a second bin, initially empty, and a supply of
blank balls. We look at our 8 measurements, calculate their mean, write
the answer on a blank ball and put it in the second bin. We put the set
of 8 single-measurement balls back into the first bin, stir the contents,

* The quantity o is known as the variance of the distribution.
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and take out, at random, a second set of 8 balls. We again calculate the
mean of the 8 values, write it on a blank ball, and put it in the second
bin. We continue the process a large number of times, always drawing
the same number, 8, of balls from the first bin. We end up with a large
number of values in the second bin, which represents another distribution,
namely a distribution of means of 8 measurements.

We denote the standard deviation of this distribution by o,,. We take
itas our measure of the error in the mean of a single set of n measurements,
and it is therefore known as the standard error in the mean. )

To sum up, o is the standard deviation of the distribution of single
measurements, and o, is the standard deviation of the distribution of
the means of sets of measurements, each set containing the same number
n of single measurements. o represents the error in a single measurement,
and o, represents the error in the mean of n measurements.

(d) Relation between o and o, There is a simple relation between o and
om Which we now prove. Consider one set of n measurements Xy eony Xne
The error in the ith reading is

e,-=x,-—X, (3.7)

where X is the true value of the quantity, which is of course unknown.
The error in the mean is

1 1 1
E=JE—X=(—-ZX,->— ==Y (x—-X)=—Ye. (3.8)
n n n
Therefore
2 2 1
E?s— % TV o8, (3.9)
n n i
i)

This is for a single set of n measurements. Now imagine that, as before,
we take a large number of sets, each set consisting of the same number
n of single measurements. Each set will have its own set of values for
€1, ---, e, and its own value of E. Equation (3.9) will be true for each
set. We add the equations for all the sets and then divide by the number
of sets, that is to say, we average (3.9) over all the sets. The average of
Y e is n{e?. The average of each term in the double sum is zero, because
the errors ¢; and ¢; are independent, and the average of each is zero. We
therefore arrive at the result

(EZ>=l<e2>- (3.10)
n
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By definition
om=(E%) and o*=(e?. (3.11)
Equation (3.10) thus becomes

(3.12)

i
= vn’
Le. the standard error in the mean of n observations is 1/ n times the
standard error in a single observation.

The value of o depends only on the precision of the individual
measurements and is independent of their number; whereas the value
of o, can be reduced by increasing n. However, since o, decreases only
as 1/v/n, it becomes more and more unprofitable to take readings of the
same quantity. Rather we should try to reduce o, by reducing o, i.e. by
taking a more precise set of readings in the first place.*

3.4 Estimation of o and o,
(a) Standard method. We have defined the quantities o and o, that we
are going to take as our measures of the error in a single measurement
and in the mean. It remains to show how we can calculate, or more
correctly how we can best estimate, them from the actual measurements.
We need to estimate only one of them, because we can then use (3.12)
to obtain the other.

The best estimate of o is [(1/n) Y e?]i, but the errors ¢; come from the
true value X and hence are not known. A way round the difficulty is
provided by working in terms of residuals.

The residual d; of the ith measurement is defined by

di=x;—% (3.13)
Unlike the error, the residual is a known quantity. We denote the rms
value of the n residuals by s, i.e.

el 7 g2, (3.14)
n

The quantity s is called the standard deviation of the sample. From (3.7)
and (3.8)
x;—X=¢—L. (3.15)

* A splendid example of this approach is to be found in the experiment to measure g
precisely - see section 7.4 (d).

e —eem
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Therefore
- 1 1 2
==Y (x-%)==Y (e—E)*
n n
1. . 1 .
=—Y e;—2E—Y ¢+ E*
n n
1 2
=;Z el—E> (3.16)
This is for one set of n measurements. As before, we take the average

of this equation over a large number of sets in the distribution and obtain
the result

(sH=0"—-02. (3.17)
From (3.12) and (3.17) we have
o= (sY), (3.18)
n—1
and
2 1 0
= i 8 (3.19)
n—1

The quantity (s?) is not known. Our best estimate of it is s*, obtained by
evaluating (3.14). Substituting this value and taking the square root gives

az( ")i, (3.20)

n—1

amz< 1 )s (3:21)
n—1

We thus have estimates of o and o, in terms of quantities that are known.*

(b) Worked example. As an-example we show how ¢ and o, are estimated
for the set of measurements in Table 3.1, which are listed again in the
first column of Table 3.2. The first step is to calculate the mean, which
1s4:625 Q). From the mean we calculate the residual of each measurement.
For example, the residual of the first measurement is

dy=(4-615—4-625) O =—-10mQ. (3.22)
The residuals and their squares are listed in the second and third columns
* The symbol = signifies that (3.20) and (3.21) are not strictly equations. The values of

the right-hand sides depend on the particular set of n measurements and are not in
general exactly equal to o and o, - see section 3.7.
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Table 3.2. Estimation of o and o, for the measurements in

Table 3.1
Resistance Residual
R/Q d/mQ (d/mQ)?
4-615 -10 100
4-638 13 169
4-597 —-28 784
4-634 9 81
4-613 -12 144
4-623 —2 4
4-659 34 1156
4-623 ~2 4
mean =4-625 sum = 2442
of Table 3.2. Then
., 1 . 2442 .
s’==Y d,f=—8—><10 cQ? 5=0-017 Q, (3.23)
n
n 1} 8\?
o= s={=] x0-017=0-019 Q, (3.24)
n—1 7
o 0-019
On=——=—"7"=0-007 Q. 3.25
vn V8 ( )

The result of a set of measurements is quoted as X+ o,. So in the
present case our best estimate of the resistance of the coil is

R =4-625+0-007 Q. (3.26)

(¢) Programmed calcularor. Calculators, programmed to calculate o, use
the standard method, but they do not evaluate s from (3.14) because
that requires the value of %, which is not known until all the numbers
are fed in. However, there is an alternative expression for s that avoids
the difficulty. From (3.2), (3.13) and (3.14) we have

Sz=iZ (xi_f)z
n

[): xXi—=2%Y x;+ nfl}

X |— |-

1 2
Zx%—(—z x,.> ) (3.27)

n

l
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Combining this with (3.20) gives

az< 1 ) [z x,?—%(z x,-)ZT. (3.28)

n—1

This is the expression used by a calculator programmed to evaluate
standard deviations. As the numbers x; are fed in, the calculator accumu-
lates the values of ¥ x7 and ¥ x;. It then uses (3.2) and (3.28) to evaluate
X and o. Similarly

S P PR
= [z, 29

(d) Deviations from a general value of x. Before leaving this section we
prove one further result. Suppose that instead of taking the deviations
of the readings from the mean X, as we have done so far, we take the
deviations from a different value of x. Denote by S(x) the rms deviation
of the readings taken from x, so that

1
[SC))=—Z (xi=x)™ (3.30)
Combining this equation with (3.27) we have

ST = 5= 3 [(5 = x)* = (5~ 27

1 2
==Y (x*=2xx+2x% —%2)
n

=x’—2%x+2% - %= (x—%)?,

[S(x))*=s*+(x— %)~ (3.31)
This demonstrates an important result. For a given set of readings the
sum of the squares of the deviations is a minimum when the deviations
are taken from the mean of the set. That is the reason why s? is not an
unbiased estimate of o. It is slightly too small, as (3.18) shows.

3.5 The Gaussian distribution

We have not yet specified the exact form of the distribution function

f(x). The results derived so far are therefore independent of the distribu-

tion. However, to make further progress we need a specific function, and
the one we shall take is

1

f(x)=

V(2m)

er-cxp [—(x—X)*/20%]. (3.32)
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This function, specified by the two constants X and o, is known as a
Gaussian, and the distribution as a Gaussian or normal distribution. Its
shape is shown in Fig. 3.5.

X

X .

Fig. 3.5. The Gaussian distribution function. The points of inflexion are at
x=Xzo0.

Later in the chapter we mention the reasons for choosing the Gaussian,

but at this stage we merely note that the function

(i) is symmetric about X,

(i1) has its maximum value at X,
(iii) tends rapidly to zero as |x — X| becomes large compared with o
Clearly these are reasonable properties for a function representing a
distribution of measurements containing only random errors.

We show below that the constant o in (3.32) is in fact the standard
deviation of the function - hence the choice of the symbol. The purpose
of the multiplying factor ’

L1

VQm) o
is to make f(x) satisfy (3.3). We can see that it does so from the value
of the first integral in Table 3.3. (The results in the table are proved in
Appendix B.) Put X =0, which does not affect the argument. Then

J' f(x) dx=\/(;w)££ exp(—x*/20%) dx=1. (3.33)
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Table 3.3. Some useful integrals for the Gaussian distribution

Jw exp(—x2/20%) dx =V (27) o

—co

Jw x? exp(—x%/207) dx =/(2m) 0

J“’ x* exp(—x/20?) dx = 3«/(27r)0'5

The standard deviation of the function in (3.32) is obtained from the
sccond integral in Table 3.3. We continue with X =0. By definition

©

(standard deviation)?= J x?f(x) dx

-0

=ﬁé Jw x* exp(—x?*/20%) dx

=g (3.34)
It is readily verified that the points of inflexion of the function

exp(—x?/207) occur at x = =0, a convenient result for relating the stan-
dard deviation to the shape of a Gaussian.

3.6 The integral function

Suppose we have a symmetric distribution represented by a function
f(x) for which X =0. We can ask what fraction ¢ (x) of the measurements
lie within the range —x to x. Since f(x) dx is by definition the fraction
of readings between x and x+dx, ¢(x) is given by

b(x)= J'_ S(y)dy. (3.35)

We call ¢(x) the integral function of the distribution. It is equal to the
shaded area in Fig. 3.6 divided by the total area under the curve.
For a Gaussian distribution with standard deviation o

¢ (x) = ﬁé J . exp(—y*/207) dy. (3.36)

The function ¢(x) depends on o. It is convenient to have one table of
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f(y)

™~

-Xx X=0 X Y —

Fig. 3.6. ¢(x), the fraction of measurements within £ x, is the ratio of the
shaded area to the total area under the distribution function f(y).

values that can be used for all values of o. The variable is therefore
changed to t=y/o. Put z=x/0. Then

d(z)= \/G) J exp(—1?/2) d. (3.37)

The function ¢(z) must be evaluated by numerical methods. It is tabu-
lated in Appendix A and plotted in Fig. 3.7.

A few selected values of ¢(z) are given in Table 3.4. The numbers in
the third column are worth remembering. We see that about two out of

1-0

é(2)
05

Z = x/o

Fig. 3.7. The integral function ¢(z) for the Gaussian distribution.
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Table 3.4. Values of the Gaussian integral function

Approximate fraction
of readings outside

z=x/o ¢(z) z value

0 0 1 out of 1
1 0-683 3
2 0-954 20
3 0-9973 400
4 0-99994 16 000

three observations lic within 0. About | in 20 of the observations lie
outside 20, and about 1 in 400 outside 3o

These results provide a quantitative basis for the statement that o is a
measure of the spread of the observations. They also provide a check
that o has been estimated correctly. For a set of readings with mean X,
roughly two-thirds of the readings should lie in the range X+ ¢. We can
also apply the results to the interpretation of o, remembering that o,

‘is the standard deviation of the distribution of means of which % is a

member. Thus, when we quote the result of the measurements as X+ oy,
the implication is that, in the absence of systematic error, the probability
that the true value of the quantity lies in the quoted range is roughly
two-thirds.

In addition to o, another quantity sometimes used to specify the error
in the measurements is the so-called probable error. It is defined as the
value of x such that one-half of the readings lie within x of the true
value. For the Gaussian distribution the probable error is equal to 0-670-
There is little point in having two similar measures of the error, and it
is obviously convenient to settle on one of them. Though its significance
is easy to appreciate, the probable error is not a very fundamental
quantity, and the error commonly quoted nowadays is the standard error.
We use it throughout the present book and only mention the probable
error because it may be encountered in older books and papers.

3.7 The error in the error
It was stated in section 3.4 that the best estimate of (s?) is provided by

s*. However, s? is just the value we happen to get from the particular
set of n readings. It is of interest to know how s* varies from one set to
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another. The error in 52 is

u=s’—{(s?. (3.38)
In Appendix C we show that for a Gaussian distribution the mean value
of u* (taken from a large number of sets of n readings) is [2/(n — 1132
Hence the fractional standard deviation of s?is[2/(n —1)]%, and, provided

n is fairly large, the fractional standard deviation of s is approximately
half this value, i.e. 1/(2n—2)%

The quantity 1/(2n—2) is plotted against n in Fig. 3.8. The result
provides a salutary warning against elaborate calculations of errors.
Notice for example that for n =9, a not insignificant number of readings,
the error estimate is only good to 1 part in 4.

06 —

0-4 I~

1/(2n-20 [

02 [~

] | ] | ] |
0 10 20 30
n

Fig. 3.8. 1/(2n-—2)!, representing the fractional standard deviation of s,
plotted against n, the number of measurements.

3.8 Range method of estimating o and o,

The standard method of estimating o and o, (section 3.4) is via s, the
standard deviation of the sample. However, if you do not have a calculator
programmed to calculate standard deviations, the expressions for s -
(3.14) and (3.27) - are tedious to evaluate. Fortunately there are other
methods of estimating ¢ and o, which are easier to use, and are almost
as reliable as the standard method. The simplest of these is the range
method. It assumes that the distribution function is Gaussian.

‘ange method of estimating o and o, : 27

Let r be the difference between the largest and smallest value in a set
of n readings. Then an estimate of o is given by the formula

o=— (3.39)

where v, is a number which may be calculated from statistical theory
(Guest 1961, p. 44). It turns out that for n up to about 12, an adequate
approximation for v, is vn. So the method reduces to the simple formula

r

~— 3.40

o (3.40)

Remember that o is independent of n. Formula (3.40) therefore implies

that the average value of the range r of a set of n readings is proportional
to x/n.

Applying the range method to the set of readings in Table 3.1 we have

r=4-659—-4-597=0-062 Q. (3.41)
Therefore
0-062
=——=0-022Q 4
T8 : (3.42)

which may be compared with o=0-019 Q given by the standard method.
If we combine (3.40) with the relation

(3.12)
we nave

e
T =", (3.43)
n

which is a particularly simple formula for estimating o,,. The formula
does not, of course, imply that o, is proportional to 1/n. Since r is
proportional to J/n, the formula implies correctly that o, is proportional
to 1/~/n.

For values of n up to 12, the fractional standard deviations of the
estimates of o given by the range method are only about 10% higher
than those given by the standard method. But for n greater than 12 the
range estimates become increasingly unreliable. Also Jn becomes an
increasingly poor approximation for v,,. (v'n becomes greater than v, so
the range method tends to underestimate ¢.) However, for values of n
up to about 12, the range method of estimating o and o, is quite adequate
for most purposes.
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3.9 Discussion of the Gaussian distribution

Much has been written about the validity of the Gaussian distribution
in the theory of errors. Perhaps the best known comment is that
experimenters believe in it because they think it can be proved by
mathematics, and mathematicians because they think it has been estab-
lished by experiment. However, the Gaussian distribution does have
some theoretical basis. For example, it may be shown to follow from the
assumption that each observation is the result of a large number of
independent errors, small but discrete, roughly equal in magnitude, and
equally likely to be positive or negative.

The assumption of a Gaussian distribution is related to taking the
mean of a set of readings as the best value of the measured quantity.
The word *best” in this context is defined as follows. Suppose the distribu-
tion function has the form f(x — X), where as usual X is the true value
of the quantity. Let & be the smallest quantity to which the measuring
instrument is sensitive. (We suppose ¢ to be small - its actual value does
not affect the argument.) The probability that we shall obtain the values
Xy, Xa,..., X, when we make n measurements is

S =X)f(x:=X) ... f(x, = X)e". (3.44)

The best value of X is defined to be the one which when inserted into
(3.44) makes the quantity a maximum, i.e. it is the value which maximizes
the probability of getting the particular set of measured values. Now it
can readily be proved that if f(x—X) is a Gaussian, the best value of
X is the mean of x, to x,, and conversely that if the best value of X is
the mean, then the distribution function is a Gaussian (Whittaker and
Robinson 1944, p. 213.) )

The Gaussian is the only distribution we shall use, but this should not
be taken to imply that all experimental distributions in physics are of
this form. Phenomena in which a random process gives rise to discrete
measured values - for example, the counting of particles in atomic and
nuclear physics - follow the Poisson distribution. This is discussed in
Appendix D.

The results we have derived using the Gaussian distribution are in fact
rather insensitive to the precise form of the distribution. This applies to
the results in sections 3.6, 3.7 and 3.8. We have seen - section 3.7 - that,
quite apart from the question of the form of the distribution, the values
obtained for the errors are, in the majority of cases, fairly crude estimates.
Their uncertainties completely swamp effects due to the distribution being
slightly non-Gaussian.

Jiscussion of the Gaussian distribution - 29

The main thing is to have some distribution which is (a) reasonable
and (b) easy to handle algebraically. In most cases the Gaussian distribu-
tion fulfils both conditions very nicely. So, unless the measurements
provide clear evidence to the contrary, we assume that the distribution
is Gaussian and use the formulae based on it. The one common instance
of non-Gaussian distribution is when the measurements are discrete,
being readings of an instrument to the nearest scale division. This situ-
ation is discussed in chapter 5.
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Summary of symbols, nomenclature, and important formulae

A. Set of n measurements
Quantities that are known

measured values b < . -
) o1
mean X==%x
n
residual for ith reading di=x;—X

1 2
standard deviation of sample s= <—Z d?)

Quantities that are not known

true value X
error in Iith reading e=x,—X
error in mean E=x-X

B. Distributions
Distribution of single measurements

standard error o= (ez)é
Distribution of means of n measurements

standard error o, =(E%?
( ) denotes the average over the distribution.

C. Important relations

o
O’m—\/n
. n '(52>
n—1

1,
om= (s
n—1

D. Formulae for estimating o and o,
Standard method

1
2

~[Zd'¥j|£_ Z-‘C?‘%(in):
a= n—1] n—1

}

U

PR
n(n-1)] n(n—1)
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Range method (suitable for 2<n=<12)

r=difference between largest and smallest reading in set

o=— o=

Jn

3|~

E. Gaussian distribution

1 I 3 )
=— —(x=-X)/20"|.
f(x) \/(zﬂ)geXp[ (x=X)°/ a}
Put X =0. The fraction of readings between x and x+dx is f(z) dz, where
1 5 x
I)=———exp(—z"/2 z=—
SQ) =g (=2, 2=

The fraction of readings between —x and +x is

$(z)= \/(%)J‘: e);p(—tz/2) dr.

f(z) and ¢(z) are tabulated in Appendix A.
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Exercises

Dartboard experiment. The following experiment is designed to illustrate
some of the basic results in the theory of random errors. Inserting numbers
into the equations to see how they work in practice is a considerable aid
to understanding the ideas behind them.

The measured values of some hypothetical quantity are simulated by
throwing darts at the central vertical column of the target shown in Fig.
3.9. Recommended dimensions for the target are 12 mm for the width of
each column and 0-6 m for the length. The target should be mounted
vertically - or sloping backwards a few degrees - on a soft board about
0-5m wide and 0-6 m long. Throw the darts standing behind a line 2m
from the target.

Five darts are used in the exercise and they are thrown in succession to
give a set of 5 readings. Try to throw each one at the central column without
being influenced by the positions of previous throws in the set. Throw 30
sets of 5 and record the number of the column in which each dart falls. If
a dart falls out of the board before it is recorded, throw it again. If it falls
outside the columns =10, measure its position and record the equivalent
column. You will find it easier to do the subsequent calculations if you
record the results by drawing a set of columns to match those of the target
and marking each throw as a tick in the appropriate column. Record each
set of 5 throws on a separate line.

The total of 150 readings is taken to represent a distribution of single
measurements. (In chapter 3 we said that a distribution is a collection of
a very large number of readings. Although 150 is not a very large number
it is adequate for the present purpose. The same comment applies to the
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Fig. 3.9. Target for dartboard experiment.

distribution of the means - see part (1) of the exercise below - which
contains only 30 values.) Denote the column value of each reading by x.
To simplify the arithmetic, the true value of the hypothetical quantity is
assumed to be zero. Then the error in each reading is equal to x and is
thus an integer.

The assumption that the true value is zero is reasonable only if there is
no systematic bias in the throwing. To check this, calculate the value of
(x), the mean value of x for the 150 throws. If (x) does not lie between
—1and {, renumber the columns, taking as the zero column the one closest
to (x). All subsequent calculations are done on the basis of the new
numbering. This way of reducing the bias keeps the arithmetic simple and
is usually adequate for the purpose. The exercise is in three parts.

(1) Relation between o and o,,. The object of this part is to help you
understand the significance of quantities o and o,,,. After you have thrown
all 150 darts count the number of throws #; in each column x; Calculate
the standard deviation o of the distribution from the relation

3.2
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Then take the mean X of each set of 5 readings. As with the single readings
the value of ecach mean is also its error. The 30 means constitute a
distribution of means. Calculate the standard deviation o, of this distribu-
tion, either by feeding the numbers into a programmed calculator, or from
the formula , 1 ,

o gl =3—0? (fj)

where X; is the mean of the jth set of 5 readings. Compare the ratio o/ o,
with its theoretical value V5.

(2) Properties of the Gaussian and its integral function. Plot a histogram
for all 150 readings, showing the number of times each reading occurs.
Use your value of o and the values of f(z) given in Appendix A to plot
a Gaussian distribution, superposing it on the histogram. (With a program-
mable calculator you can obtain the required Gaussian directly.)

Use the values of ¢(z) given in. Appendix A to plot a graph of the
theoretical number of readings that lie within +x for a Gaussian distribu-
tion, and insert your own values on it. (Think carefully about the x
coordinates of the latter.)

(3) Range method of estimating o. Calculate the range r for each of the
30 sets. Find the mean value of r, and use the relation o= r/\/5, with r=7,
to obtain a second estimate of o. Compare it with the value obtained in
part (1).

Calculate the standard deviation p of the 30 values of r, and hence the
fractional standard deviation p/7. The theoretical expression for the frac-
tional standard deviation of the o values, when they are estimated by the
standard method for each set of 5 readings, is 1/(2n —2)! - see section 3.7.
Compare your value of p/7 with the value of the theoretical expression
for n =5, which will indicate the comparative reliabilities of the range and
standard methods of estimating o-.

Dr Winter at the Cavendish Laboratory has produced a computer version
of the dartboard exercise for the BBC microcomputer. It has the advantage
that the values of the simulated measurements (obtained by stopping a
moving spot on the monitor screen) are stored in the computer, and hence
the arithmetical manipulations can be carried out rapidly. Thus it is easy
to carry out the calculations for a range of n values - not just n=5. A
listing of the program and a cassette tape are available on application.*

In an undergraduate practical class in the Cavendish Laboratory there was
an experiment, originally devised by Searle, to measure the Young modulus
E for steel by applying a known load to a rod and measuring the deflection
by an optical method based on Newton's rings. Although ingenious and
capable of considerable precision in the hands of a skilled experimenter,
such as Searle himself, the results obtained by the students were found to
have a considerable scatter. The experiment was therefore replaced by one
in which a horizontal steel beam was supported near its ends, and the

* Dr A. T. Winter, Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE. There
is a small charge for the cassette tape to cover the cost.
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dFﬂection when a known load was applied at the centre was measured
directly by a dial indicator.

~ The values obtained for E by the last 10 students who did the Newton’s
nngs_experiment and by the first 10 who did the dial indicaror experiment
are given below. The values are in units of 10"' N m~2,

Newton’s rings experiment 1-90, 2-28, 1-74, 2-27, 1-67, 2-01, 1-60, 2-18,
2-18, 2-00.

Dial indicator experiment 2-01, 2-05, 2-03, 2-07, 2-04, 2-02, 2-09, 2-09,
2-04, 2-03.

For each set of values, calculate the mean value of E, and estimate the
standard error in the mean, by the two methods given in this chapter. Do
the results indicate any systematic difference in the two experimental
methods?

The thermal conductivity of copper at 0°C is
k=385-0Wm™ K.
A large number of measurements of k, free from systematic error, form a
Gaussian distribution with standard error
o=15-0Wm™' K"
What is the probability that a single measurement lies in the range
(a) 385-0 to 385-1, (b) 400-0 to 400-1, (c) 415-0 to 415-1,
(d) 3700 to 400-0, (e) 355-0 to 415-0, (f) 3400 to 430-0 Wm™' K~1?

4

Further topics in statistical
theory

4.1 The treatment of functions

In most experiments we do not measure the final quantity Z directly.
Instead we measure certain primary quantities A, B, C, etc. and calculate
Z, which must be a known function of the primary quantities. For
example, we might measure the density d of the material of a rectangular
block by measuring the mass M and the dimensions I, I, I. of the block.
The functional relation between the quantity we require, d, and the
primary quantities M, I, I, I is

d= : (4.1)

¥tz

—

Suppose that each primary quantity has been measured several times.
Then, in the case of A, we have a best value A, the mean of the measured
values, and an estimate of its standard error AA. (The latter is the o, of
the previous chapter.) Similarly we have B and an estimate of AB. We
assume that the measurements of the primary quantities are independent
and therefore that the errors in them are also independent. By this we
mean, for example, that if the value of A happens to be high, the value
of B still has an equal probability of being high or low. From the values
A=A, B= B, etc., the best value of Z may be calculated. The problem
we are going to consider is how to calculate the standard error AZ in Z
from the standard errors AA, AB, etc. Although we are restricting the
discussion to independent measurements, there are occasional situations
where the assumption is not valid. The way AZ is calculated in such
cases depends on the way the primary errors are related; no general rule
can be given. Exercise 4.2 provides an example of related errors.

(a) Functions of one variable. We consider first the case where Z is a
function of only one variable A, for example

Z=A? or Z=InA.
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We write this in general as

If the true value of the primary quantity is A,
Zy= Z(A)

- see Fig. 4.1. The error in a given value A js -
Ei=A-A,, (4.4)
z /‘\
Ez Z(A)
Z
£,
Ao -
. A
Fig. 4.1. Error £.in Z due to error E,in A
and this gives rise to an error E; in Z, where
E, =Z(Ao+EL)—Z(A,) (4.5)
_9z,
a4 Er (4.6)

The de‘n'vative dZ/dA is evaluated at A = A,.
;s equivalent to the assumption that the erro
or Z(A) to be represented by a straight line over the range of the

measur 1 1
measy ed values of A. The error in Z is therefore proportional to the
or in A, the constant of proportionality being

com(22)
dA/ aen, (4.7)

W .
. m;lr;ow allow A to vary according to the distribution of which A s
er and take the root-mean-square of (4.6). This gives the result

The approximation in (4.6)
rin A is sufficiently small

. AZ =c,AA. (4.8)
An important special case is Z = A", for which ¢, =nA""'. Then
8Z_ s
z "o “a)

the true value of 7 is
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ie. the fractional standard error in Z is n times that in A. We have
already used this result (p. 26) for the case n =1

(b) Functions of several variables. We next consider the case where Z is
a function of two variables A and B,

Z=Z(A, B). (4.10)

The errors in A and B are
E.=A—-A,, Eg=B— By, (4.11)

where A, and B, are the true values of A and B. As before we assume
that Z is approximately a linear function of A and B in the range over
which the measured values vary. Then the error in Z is

Ez=caEas+ cpEp, V (4.12)

where the coefficients c4 and cg are given by

0Z 0Z ‘
— (4.13)

CaA= S—A_’ Cg= 3B
The partial derivatives are evaluated at A= A,, B= B,.
From (4.12)
E%¥=cAEA+cLE%+2cacsEAEs. (4.14)

We take the average of this equation for pairs of values of A and B taken
from their respective distributions. Since A and B are assumed indepen-
dent, the average value of E,Ejp is zero. By definition

(AZ)*=(E3%), (AA =(EL), (AB)*=(E%). (4.15)
Therefore
(AZ) = c4(AA)+ ch(AB) . (4.16)

We can now state the general rule. Let Z be a known function of A,
B,.C, ... Let the standard error in A be AA and so on. Then the standard

error AZ in Z is given by

(AZ) = (AZ\)*+(AZp) +(AZe) +..., (4.17)
where
4
AZ,= <§—A> AA andsoon. (4.18)

The expressions for AZ for some common relations between Z and
A, B are given in Table 4.1.
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Table 4.1. Combination of errors

Relation between Relation between

Zand A, B standard errors
Z=A+B} (AZ)=(AA)+(aB)? 0
Z=A=B =haa) :
Z=AB AZ\* [AA\? [AB\? ..
— | =(—) +[= (ii)
Z=A/B Z A B
AZ AA
Z=A" —=n—om (iii)
Z A
AA 5
Z=InA AZ =— (iv)
A
AZ
Z=exp A —ZT=AA (v)

4.2 The straight line

In an experiment it is often the case that one quantity y is a function of
another quantity x, and measurements are made of pairs of values of x
and y. The values are then plotted on a graph and we try to find a curve
corresponding to some algebraic function ¥ = y(x) which passes as closely
as possible through the points. We shall only consider the case where
the function is the straight line

y=mx+c. (4.19)

The problem is to calculate the values of the parameters m and c¢ for
the best straight line through the points.

The straight-line relation covers a great range of physical situations.
In fact we usually try to plot the graph so that the expected relationship
Is a straight line. For example, if we expect the refractive index u of a
certain glass to be related to the wavelength A of the light by the equation

m=a+b/A? (4.20)

we plot u against 1/A2%
We give two methods for calculating the best, i.e. most probable, line
through a set of points.

(a) The method of least squares. This is the standard statistical method.
Suppose there are n pairs of measurements (X1, 70, (X, ¥2), -, (X 70)
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- Fig. 4.2. Assume that the errors are entirely in the y values.* For a
given pair of values for m and ¢, the deviation of the ith reading is
Yi—mXx;—c. (4.21)
The best values of m and ¢ arc taken to be those for which
S=Y(y;—mx;—c)? (4.22)

is a minimum® - hence the name method of least squares.

X —

Fig. 4.2. Method of least squares. The best line through the points is taken
to be the one for which ¥(y; — mx; —c)? is a minimum.

The principle of minimizing the sum of the squares of the deviations
was first suggested by Legendre in 1806. We have already seen that in
the case of a single observable the principle gives the mean as the best

value.

From (4.22
a_S_: _2le_(yl,—mx‘.—c) .—_O, (4‘23)
am
‘;_S= =2y (y;—mx;—c) =0. (4.24)
¢

Therefore the required values of m and ¢ are obtained from the two

* The analysis for the casc when therc are errors in both the x and y variables is much
more complicated - see Guest 1961, p. 128 - but the resulting straight line is usually
quite close to that given by the present calculation - see exercise 4.4.

¥ The points are assumed to have equal weights. The case of unequal weights is discussed
in the next section.
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simultaneous equations

myxi+cYx; =y Xy, (4.25)
myx;+cn=Yy,. (4.26)
The last equation shows that the best line goes through the point
g=1y -
=L L% y=- L (4.27)
i.e. through the centre of gravity of all the points. From (4.25) and (4.26)
2 (x =Xy
2 e e — ] 4.28
2(x;—x)° ( )
c=j—mx (4.29)

When the best values of m and ¢ are inserted into (4.21), the deviations
become the residuals

di=y,—mx;—c (4.30)
Estimates of the standard errors in m and ¢ are given by
1 Yd;
Am)?=— =L
(it e 2L (4.31)
, (1 =\ Yd?
Ac)y'=|—+—= ' 2
(Ae) <n D>n—2’ 4.32)
D=5 (x;=%)~ (4.33)

These results are proved in Appendix E.
If we require the best line that passes through the origin, the value of
m is given by (4.25) with ¢=0:

Y Xy

= 4.
S (4.34)
An estimate of its standard error is given by
, 1 Yd?
Am) =— =—, .
(Am)i=s 250 (4.35)

(b) Points in pairs. With a computer it is a simple matter to evaluate the
best values of m and ¢ from (4.25) and (4.26), and the standard errors
from (4.31) and (4.32). With a programmable calculator the evaluation
of m and c is still straightforward, but the evaluation of the standard
errors is laborious due to the need to calculate the deviations d,. However,
there are other methods that can be used in the absence of a computer.
The following is a simple one that is often adequate for the purpose. It
is particularly useful when the x values are equally spaced.
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In order to illustrate the method, suppose that we have 8 points that
lie approximately on a straight line, and we require the best value of the
slope m and the error in it. Let the points be numbered in order from 1
to 8 - see Fig. 4.3. Consider points 1 and 5; they determine a straight
line and hence a value for the slope. Pairing the points in this way we
obtain four values for the slope. We take their mean rm as the best value
of m and find its standard error in the usual way.

o w
Rl

Fig. 4.3. Simple method of estimating slope of best line. Each pair of points
1-5, 2-6, etc. gives a value of the slope. The mean is taken as the best value.

The method will give a reasonable result only if the quantities (xs— x,),
(x¢ —X3), (x7—x3), (xg—x,) are roughly equal. Otherwise, the four values
of the slope do not have equal weight.

The best line given by this method is the one with slope 77 that passes
through the point X, . (We have already seen that the line given by the
method of least squares passes through this point.) However, the method
is mainly used when only the slope is required.

4.3 Weighting of results
Suppose we measure a quantity a certain number of times, say 10, and
obtain the values x,, X, ..., x;o. Suppose further that we divide the
measurements into two sets and calculate the mean of each. For example,
we might make 7 of the measurements in the morning and calculate their
mean

L =3x, +xa .. +Xy). (4.36)
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Then we might make the other 3 in the afternoon and calculate their mean
Z2 =%(xa+x9+xro)- (4.37)
The best value from all 10 measurements is
I=15(x,+ X+, ..+ x,0), (4.38)
and obviously it is not given by taking the simple mean of z, and z,. If
we wish to calculate it from these two quantities, it is given by
_ 7Z| +3:'_7
10

The numbers 7 and 3 are termed the weights or relative weights of the
quantities z, and z,.

ty

(4.39)

In general, if we have a set of N values z,, z,,..., zy with relative
weights wy, wa, ..., wy, then the best value of the quantity is
WiZ;
I= 2 . (4.40)
PR

If all the ws are multiplied by a constant, the value of = is unchanged,
so it is only the ratios of the ws that matter.

Suppose now that we have N measurements of the quantity z, each
measurement having its own standard error, i.e. we have

2 £ Az, Zy Az, ..., T AZN

What weight should we give to each z; in order to obtain the best value
of z from all the measurements? The answer is provided by the simple
example at the beginning of the section. We saw that if z is the mean
of n; original values, then its weight w, is proportional to n, This assumes
that all the original values have the same weight, that is, that they all
come from the same distribution characterized by a certain standard
error 0. We therefore imagine each z; in the above set is the mean of n,
original values taken from a distribution of standard error o, and give
it weight n;.

We do not know the value of o;infact we can choose it quite arbitrarily
but, having fixed on a value, we use the result

Az =— (4.41)
i \/n,- )
to obtain n;. So
0_2
wi=n;= 2 (442)
(Az)”

The standard error in Z is o/(I )%
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From (4.40) and (4.42) the best value of Z and its standard error are
2
ZU/Az) 7z - - (4.43)
Y(1/az)"  [X(1/Az)7)

Both these expressions are independent of the value of o as of course

they must be. -
In section 4.2 we gave the method of least squares for finding the best

straight line through a set of points of equal weight. The generalization
to the case of unequal weights is readily made. If w; is the weight of the
pair of values x;, y;, then it is necessary to minimize the quantity

S, =Y wi(y;—mx;—c)>. (4.44)

The equations for m and ¢ become
mY wixi+ cywix; =Y wix,yi, (4.45)
my wix; + cywp =y Wy (4.46)

The expressions for m and ¢ and their standard errors are given in the
summary that follows.
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Summary of equations for the best straight line by
" the method of least squares

n points x;, y;

Equal weights

General line y=mx+c

m=iZ(v—€)y- (Am)zzL Ldi
D= Dn-2
. . (1 2\ Td?

c=y—mx Ac)"=(—+— -

Yhe) <n D>n—-2
1 1

X=—Yx; y =— ;

x n‘—‘x‘ y nZ}’,

D=5 (x—x)? di=y,—mx;,—c

Line through origin y = mx

in)'i ) I 7(!2
== Am) = =—
x5 (&m) Yxin—1
d; =y, — mx;
Unequal weights
General line y=mx+c¢
1 ; 1 Ywd?
m=—3%w,(x;— %)y, Am)P~—=="1
pLIMR =Ry (amtep- 22
=2 2
g=F—=mx (Ac)2=<L+L>LW'di
Lw; D,/ n=2
-=Zwixi ___ZWI‘}’.'
Wi - Wi
D, =Ywi(x;—x)* di=y,—mx,—c
Line through origin  y = mx
Y WXy, s
m =V‘—:—3 (Am)lz_l_’ M
2.WiX; Z)Vix; n —1

d, =y, — mx;

4.1

4.2

4.3

Exercises 45

Exercises

In the following examples, Z is a given function of the independently
measured quantities A, B, ... Calculate the value of Z and its standard
error AZ from the given values of A+AA, B+AB,...

(a) Zz=A% A=25x1.

(b) Z=A-2B, A=100%3,
B=45%2.

(c) Z=§(C2+D3), A=0-100%0-003,
B =1-00£0-05,
C =50-0%0-5,
D=100=8.

(d) Z=Aln B, A= 10-00:0-06,
B=100=2.

(e) z=1—i, A=50+£2.

A

The volume V of a rectangular block is determined by measuring the
lengths [, [, I. of its sides. From the scatter of the measurements a standard
error of 0-01% is assigned to each dimension. What is the standard error
in V (a) if the scatter is due to errors in setting and reading the measuring
instrument and (b) if it is due to temperature fluctuations?

A weight W is suspended from the centre of a steel bar which is supported
at its ends, and the deflection at the centre is measured by means of a dial
height-indicator whose readings are denoted by y. The following values
are obtained:

W/kg y/pm

0 1642

! 1483
1 1300
13 1140
2 948
2% 781
3 590
34 426
4 263
4% 77

(a) Plot the points on a graph and draw the best line by eye. Make an
intelligent guess of the standard error in the slope by placing a trans-
parent rule along the points and seeing what might be reasonable
limits for the line.

(b) Calculate the best value of the slope and its standard error by the
method of least squares, and compare the results with your estimates
in (a).
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(c) Calculate the best value of the slope and its standard error by the
methog of points in pairs, and draw the line with this slope through
the point %, . Compare these results with those of (b)

Th? zener diode is a semiconductor device with the property that its
resistance drops suddenly to almost zero when the reverse bias voltage
cy.(cecds a critical value V., which depends on the temperature T of the
diode. The value of V. is of the order of volts, but the temperature coefficient
dV./dT is only a few millivolts per °C in the temperature range 20-30 °C.
Therefore, to measure dV./dT precisely, a constant reference voltage is
subtracted from V,, and the resulting voltage V is measured directly on a

gigital multimeter. The following values are obtained for a particular zener
iode:

T/°C V/mV T/°C V/mV
24-0 72-5 50-0 139
30-0 93 56-2 156-5
37-6 107 61-0 171
40-0 116 64-6 178
44-1 127 73-0 198-5

Treat the data in the same way as in parts (a), (b), and (c) of exercise
4.3, assuming in part (b) that the temperature measurements are free from
error. This assumption is probably not correct, so repeat the least squares
calculation, assuming that the voltage measurements are free from error
and compare the two values of dV,/dT. ’

The rcsults'ofthe 6 most precise measurements of the mass of the charged
7 meson given in Wohl er al. 1984 are

Mass of w=/keV

Year Value Standard error
1973 139 569 8

1976 139 571 10

1976 139 568-6 2-0

1976 139 566-7 2-4

1979 139 565-8 1-8

1980 139 567-5 0-9

Calculate 'the weighted mean and its standard error. (The mass m of a

nucilcar particle is usually given, as here, in terms of its encrgy equivalent
mc®.)

5

Common sense in errors

5.1 Error calculations in practice

We are now in a position to estimate the standard errors for a large class
of experiments. Let us briefly recapitulate. The final quantity Z is a
function of the primary quantities A, B, C, ... which are either measured
directly or are the slopes or intercepts of straight lines drawn through
points representing directly measured quantities.

If the quantity is measured directly, we take the mean of several values
to be the best value and obtain its standard error by one of the methods
given in chapter 3. (During the present chapter we shall drop the word
‘standard’ in ‘standard error’. We shall not be considering the actual
error in a measured quantity, and the word ‘error’ will refer to the
standard error, i.e., the standard deviation of the distribution of which
the quantity is a member.) If the quantity is the slope or intercept in a
straight line, its value and error are obtained either from the method of
least squares or from the method of taking the points in pairs.

The best value of Z is calculated from the best values of the primary
quantities, and its error is obtained from their errors by the rules given
in Table 4.1, or in general from (4.17) and (4.18).

There are often a large number of primary quantities to be measured,
and it might be thought that the calculation of the error in each one and
the subsequent calculation of the error in Z would be a laborious process.
And with many students itis indeed. They calculate the standard deviation
automatically for every set of measurements, and combine all the errors
irrespective of their magnitudes according to the formal rules, involving
themselves in elaborate calculations and ending up with an error calcu-
lated to a meaningless number of decimal places, which is usually wrong
by several orders of magnitude due to various arithmetical slips on the
way.

To see what is required in practice, let us first remember why we
estimate errors. It is to provide a measure of the significance of the final
result. The use made of the error is seldom based on such precise
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calculation that we need its value to better than | part in 4. Often we
are interested in the error to much less precision, perhaps only to within
a factor of 2. However, let us take 1 part in 4 as an arbitrary but adequate
degree of precision for the final error.

(a) Combining errors. If we look at the equation for combining errors
(4.17), we see that, owing to the procedure of squaring the terms, one
error is often negligible compared with another. Consider the case

Z=A+B, (5.1)
and let AA=2 and AB =1. From Table 4.1, (i)
AZ =(22+1)i=2.24. (5.2)

So cven though AB is as much as one-half of AA, ignoring AB altogether
and putting AZ = AA =2 makes a difference of only about | part in 8 in
the final error. If Z is the sum of several quantities, ignoring errors that
are one-half of the largest error may be rather drastic, but we shall nearly
always be justified in ignoring an error less than one-third of the largest
error.

We may notice also the situation when the quantities themselves differ
greatly in magnitude. For example, suppose in (5.1) that B is some small
correction term and we have values

A=100x6

B= 5+7
The error in B will be negligible unless it is as much as 3, but such an
error amounts to 60% of B; so the quantity will have to be measured
very roughly indeed if its error is to contribute.

In the case of multiplication and division - Table 4.1, (ii) - we add
the squares, not of the errors themselves, but of the fractional errors. So
in this case, all fractional errors less than about one-third of the largest
fractional error may be neglected.

(b) Contributing and non-contributing errors. With these considerations in
mind let us go back to the estimation of the errors in the primary
quantities. We may call a quantity contributing or non-contributing accord-
ing to whether or not its error contributes appreciably to the final error.
A quantity may be non-contributing either because it is measured rela-
tively precisely or because it is added to a much larger quantity.

If we suspect that a quantity is non-contributing, it is sufficient to
estimate its error very roughly, provided the estimate is on the high side.
The reason for this condition is obvious. It ensures that we do not omit
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the error unjustifiably. If the inflated error is negligible we are quite safe.
If not, we must go back to the measurements and work out the error
more carefully.
For example, suppose the results of successive weighings of an object

are:

50-3853 g

50-3846

50-3847

50-3849.
We take the best value of the weight to be

50-3849 £ 0-0003 g.

We expect this set of measurements to be much more precise than several
others in the particular experiment and we therefore estimate an error
simply by inspecting the measurements. The value 0-0003 encompasses
3 out of the 4 individual readings, so it is almost certain to be an
overestimate of the error in the mean.

(¢) Discrete readings. Another case where a common-sense estimate of
the error should be made is when the readings are in digital form or are
taken to the nearest scale division of an instrument, and show little or
no spread. Consider the following set of measurements made with a
metre rule:
325,325,325, 3253, 325, 325 mm.

The most one cay say is that the measured quantity is 3253 mm or
325+3mm.* If a better value of the quantity and its error are required,
they will not be obtained by more arithmetic, nor by more measurements
of the same kind. Either the scale should be estimated to 15 mm as the
measurements are made, or a more precise instrument such as a
cathetometer should be used.

(d) Systematic errors. So far we have confined the discussion to the
estimation of random errors. And this is all that is needed in the majority
of experiments. Any systematic error that we know about should be
corrected and hence eliminated - or at least rendered negligible. Normally
we would reduce it to a level small compared with the random errors.
So it would be non-contributing and would not enter the error calculation.

* It is not unknown for students to solemnly feed these numbers into their calculators,
arriving at the result 325-08 £0-08 mm.
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The occasional situation when residual systematic errors are not small
compared with random errors should be discussed and treated on its
merits. One way of proceeding is to try to estimate, for each systematic
error, something equivalent to a standard error, that is to say, a quantity
such that we think there are about 2 chances in 3 that the true value lies
within the quoted range. For example, we might estimate - or make an
intelligent guess of - an upper limit, and then divide it by 2. (This may
seem rough and ready, but a crude estimate is better than none at all.)
All the errors are then combined as though they were random and
independent. When this is done, it is good practice to make quite clear
how much of the final error is due to the actual random error and how
much to the various systematic errors.

(e) The final quoted error. We may sum up as follows. Systematic errors
are eliminated as far as possible. The random errors in contributing
quantities are calculated by an appropriate statistical method. Other
errors are estimated roughly, the estimates being slightly on the high
side. A check - which can often be done mentally - is made that these
errors are in fact negligible. The contributing errors are then combined
according to the rules of Table 4.1 to give the final quoted error. This
quantity represents our best estimate of the standard deviation of the
distribution of results that would be obtained if the entire experiment
were repeated many times with the same or similar apparatus. It is thus
a measure of the overall reproducibility of the result.

Some experimenters, having obtained the overall error in the usual
way, then proceed to enlarge it by an arbitrary factor to take account of
possible, but unknown, sources of systematic error. This is highly undesir-
able. It is difficult for anyone to make use of these subjective overesti-
mates. You should estimate the error as honestly as you are able and
leave it at that. If it subsequently turns out that the ‘true’ value of the
quantity being measured is several times your estimated error away from
the value you have obtained, you may or may not be held at fault. But
you must not arbitrarily double or treble the error as a kind of safety
measure to prevent the situation arising. Quite apart from the confusion
caused by the uncertain significance of the final error, the procedure may
obscure genuine discrepancies between one experimental result and
inother, or between theory and experiment.

It is conventional to quote the final error in absolute terms and not as
t fraction or percentage. The final value of the quantity being measured
ind its error should be given to the same number of digits, which should

Complicated functions ‘ 51

not be more than are meaningful. In general this corresponds to an error
of one significant digit, though, if this digit is I or 2 a second digit might
be given. The fact that we do not want an estimate of the final error
more precise than this means that the whole error calculation should be
done only to one or at the most two significant digits.

5.2 Complicated functions

The evaluation of quantities of the type 3Z/8A in (4.18) is sometimes
quite laborious. As an example consider the measurement of the refractive
index u of a glass prism by measuring the angle A of the prism and the
angle D of minimum deviation. The refractive index is obtained from
the equation

_sinz(A+D)

. (5.3)
sinsA
The error in u is given by
(Ap)*=(Apa)+(App) (5.4)
Ap, is the error in p due to the error AA in A and is given by
au
Apsa=|—] AA. (5.5)
Ha <8A>
Similarly for App.
The expressions for du/3A and du/9D are
1 i
8_p=l cos 2(A-!—D)__l sml:(A+IlD) , (5.6)
dA 2 ° siniA 2 sin3A tan 1A
dp _1cos A+ D) (5.7)

>

aD 2 sin3A
These expressions have to be evaluated at A= A, the measured value of
A, and D= D, the measured value of D. And, provided we do the
arithmetic correctly and remember to express AA and AD in radians,
we shall get the right answer for Au, and App. ‘
However, there is a quicker method. Consider the significance of Apu,.
It is the change in the value of © when A changes by an amount AA,
the value of D remaining constant. So it may be obtained_by calculatin_g
w from (5.3), first for A=A, D= D and then for A= A+AA, D=D.
The difference is Ap,. Similarly Aup is obtained by calculating w for
A=A, D= D+AD. All we need are the sine values. We do not have to
do any complicated algebra or arithmetic - fruitful sources of mistakes
- nor bother to convert AA and AD into radians. We combine Ap, and
App in the usual way.
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The fact that this method of calculating Au, and App is much quicker
than the more formal method should not lead you to imagine that it is
in any way less rigorous or exact. The two methods usually give the same
answer, and when they do not, the formal method is not valid. This may
be seen from Fig. 5.1, where the results of the two methods are shown
for some relation Z = Z(A). The best value of A is A and this corresponds
to Z,. The error AZ, obtained by the formal method corresponds to
putting the tangent to the curve Z(A) at the point A, Z,. The value
calculated from the simpler and more direct method is AZ, inthe diagram.
We could equally well have calculated AZ by taking the value A-AA,
which would have given AZ_.

The curvature of the function Z(A) over the range A+AA is not
usually as large as that shown in Fig. 5.1; in which case the difference
between AZ,, AZ, and AZ_ is negligible. If, however, the curvature of
the function is significant, then a single value of the error is misleading.
Instead, both AZ, and AZ_ should be calculated and the result quoted
as
+AZ,

-AZ_ "

Such refinement is seldom Justified. The main point is that to calculate

the error in Z due to an error in A, we cannot go wrong if we simply

Z=2z,

I Z(A)\

Az, Az

2 — S
oz foz

-

A-AA A A+AA
A ——

Fig. 5.1. Relation between different estimates of AZ
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calculate the values of Z at the values A and A+ AA, with the other
measured quantities constant. And often this is much quicker than the
formal method.

5.3 Errors and experimental procedure

When the final quantity Z is related to two directly measured quantities
by a function of the form
Z=AB or A/B,
then an error of x% in A or B gives rise to an error of x% in Z So we
would try to measure A and B with comparable precision, and this is
true whatever the relative magnitudes of A and B. But the situation
Z=A+B or A-B
is quite different. Everything depends on the relative magnitudes of A
and B. Look at the following example:
Case | A=10000+1,
B = 100+5,
Z=A+B =10100%5.
Here A is a large, precisely known quantity. B has been measured to
5%, but the final quantity Z has been found to 0-05%. So we see that
it is advantageous to start with a large, precisely known quantity and
simply measure a small additional term in order to get the required
quantity.
Now consider the following:
Case II A=100+£2,
B = 96=+2,
Z=A-B= 4x3.

The two directly measured quantities have been determined to 2%, but
the final quantity is only known to 75%. So taking the diflerence between
two nearly equal quantities, each of which is measured independently,
is inherently disadvantageous; the final error is greatly magnified. If
possible an entirely different method of measuring Z should be found.

In the next two chapters we shall give specific examples of methods
devised to take advantage of the Case I situation and others devised to
avoid Case II. They provide examples of the way error considerations
may have a direct influence on experimental procedure.

We give one hypothetical example here. Consider the following situ-
ation. We require to measure the quantity Z = A/ B. We have made a set



54 Common sense in errors

of measurements and found

A =1000 20,
B= 10=x1.
Therefore
AA AB
—:')00 —_— Oo
o =2% and —==10%,
whence

=(224+10%)t=10-2%.

We have some further time available for measurements and estimate
it is sufficient to reduce the error in either A or B by a factor 2. If we
devote the time to A, we shall have

AA L AZ |
=1%, which gives —Z—=(I‘+102)2=10-0%.

If we devote it to B, we shall have

A5
B

So in the first case the overall error is barely changed, and in the second
case it is reduced by a factor of almost 2. The moral is always concentrate
on quantities that contribute most to the final error.

In general one should plan the experiment so that in the final result
no one quantity contributes an error much greater than the others. In
the present example we may suspect that the original measurements,
which resulted in AB/B being 5 times greater than AA/ A, were badly
planned, and that more time should have been devoted to measuring B
at the expense of A. Of course it is not always the case that additional
measurements result in a reduction of the error. Nevertheless, the desira-
bility of reducing the maximum contributing error should always be kept
in mind when planning an experiment.

c o A . \
=5%, which gives —Z—g=(2'+52):=5-4%.

Exercises

5.1 A rectangular brass bar of mass M has dimensions a, b, c. The moment
of inertia I about an axis in the centre of the ab face and perpendicular
to it is

I—M( +b?
T ).

5.2
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The following measurements are made:
M=135-0x0-1g,
a=80+1mm,
b=10+1mm,
¢=20-00£0-01 mm.

What is the percentage standard error in (a) the density p of the material,
and (b) the moment of inertia?

When a torsion wire of radius r and length [/ is fixed at one end and
subjected to a couple of moment C at the other, the angular displacement
¢ is given by

21C

a0
nwr

where n is the rigidity modulus of the material of the wire. The following
values are obtained:
¢/C=400£0-12rad N"'m™",
r=1-00=0-02 mm,
I=500+1 mm.

Calculate the value of n and its standard error.

If a narrow collimated beam of monoenergetic y-rays of intensity Ij is
incident on a thin sheet of material of thickness x, the intensity of the
emerging beam is given by
I'=1Iyexp (—ux),
where u is a quantity known as the linear attenuation coefficient. The
following values are obtained for y-rays of energy 1 MeV incident on lead:
I=(0-926+0-010) X 10" y-rays m~?s7",
I,=(2-026£0-012) x 10'%y-rays m™s ™",
x=(10-00+0-02) mm.
Calculate the value of p and its standard error for y-rays of this energy
in lead.

Neutrons reflected by a crystal obey Bragg's law nA =2d sin 6, where A is
the de Broglie wavelength of the neutrons, d is the spacing between the
reflecting planes of atoms in the crystal, § is the angle between the incident
(or reflected) neutrons and the atomic planes, and n is an integer. If n and
d are known, the measured value of 8 for a beam of monoenergetic neutrons
determines A, and hence the kinetic energy E of the neutrons. If 8=
11°18'+£9’, what is the fractional error in E?

The frequency f of a tuning fork is related to the length L of its arms and
the value of the Young modulus E of its material by
fec/(EL).

When the temperature rises by 10 K, the frequency of a certain fork falls
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by (0-250+0-002)%. For the same temperature rise, the Young modulus
of the material falls by (0-520£0-003)%. Calculate the value of «, the
coefficient of linear expansion of the material, given by these experiments.
What is its standard error? Is this a good method for measuring the
coefficient of linear expansion?

PART 2

Experimental methods



